Graph-cut is monotone submodular
WebMay 7, 2008 · We introduce several generalizations of classical computer science problems obtained by replacing simpler objective functions with general submodular functions. The new problems include submodular load balancing, which generalizes load balancing or minimum-makespan scheduling, submodular sparsest cut and submodular balanced … WebUnconstrained submodular function maximization • BD ↓6 ⊆F {C(6)}: Find the best meal (only interesting if non-monotone) • Generalizes Max (directed) cut. Maximizing Submodular Func/ons Submodular maximization with a cardinality constraint • BD ↓6 ⊆F, 6 ≤8 {C(6)}: Find the best meal of at most k dishes.
Graph-cut is monotone submodular
Did you know?
WebThere are fewer examples of non-monotone submodular/supermodular functions, which are nontheless fundamental. Graph Cuts Xis the set of nodes in a graph G, and f(S) is the number of edges crossing the cut (S;XnS). Submodular Non-monotone. Graph Density Xis the set of nodes in a graph G, and f(S) = E(S) jSj where E(S) is the Web5 Non-monotone Functions There might be some applications where the submodular function is non-monotone, i.e. it might not be the case that F(S) F(T) for S T. Examples of this include the graph cut function where the cut size might reduce as we add more nodes in the set; mutual information etc. We might still assume that F(S) 0, 8S.
WebThe authors do not use the sate of the art problem for maximizing a monotone submodular function subject to a knapsack constraint. [YZA] provides a tighter result. I think merging the idea of sub-sampling with the result of [YZA] improves the approximation guarantee. c. The idea of reducing the computational complexity by lazy evaluations is a ... Webmonotone submodular maximization and can be arbitrarily bad in the non-monotone case. Is it possible to design fast parallel algorithms for non-monotone submodular maximization? For unconstrained non-monotone submodular maximization, one can trivially obtain an approximation of 1=4 in 0 rounds by simply selecting a set uniformly at …
Webmonotone. A classic example of such a submodular function is f(S) = J2eeS(s) w(e)> where S(S) is a cut in a graph (or hypergraph) G = (V, E) induced by a set of vertices S Q V, and w(e) > 0 is the weight of an edge e QE. An example for a monotone submodular function is fc =: 2L -> [R, defined on a subset of vertices in a bipartite graph G = (L ... WebJul 1, 2016 · Let f be monotone submodular and permutation symmetric in the sense that f (A) = f (\sigma (A)) for any permutation \sigma of the set \mathcal {E}. If \mathcal {G} is a complete graph, then h is submodular. Proof Symmetry implies that f is of the form f (A) = g ( A ) for a scalar function g.
Webe∈δ(S) w(e), where δ(S) is a cut in a graph (or hypergraph) induced by a set of vertices S and w(e) is the weight of edge e. Cuts in undirected graphs and hypergraphs yield …
WebM;w(A) = maxfw(S) : S A;S2Igis a monotone submodular function. Cut functions in graphs and hypergraphs: Given an undirected graph G= (V;E) and a non-negative capacity function c: E!R +, the cut capacity function f: 2V!R + de ned by f(S) = c( (S)) is a symmetric submodular function. Here (S) is the set of all edges in E with exactly one endpoint ... in wall seatingWebA function f defined on subsets of a ground set V is called submodular if for all subsets S,T ⊆V, f(S)+f(T) ≥f(S∪T)+f(S∩T). Submodularity is a discrete analog of convexity. It also shares some nice properties with concave functions, as it … in wall seating hotelsWebmaximizing a monotone1 submodular function where at most kelements can be chosen. This result is known to be tight [44], even in the case where the objective function is a cover-age function [14]. However, when one considers submodular objectives which are not monotone, less is known. An ap-proximation of 0:309 was given by [51], which was ... in wall security cameraWebSubmodular functions appear broadly in problems in machine learning and optimization. Let us see some examples. Exercise 3 (Cut function). Let G(V;E) be a graph with a weight function w: E!R +. Show that the function that associates to each set A V the value w( (A)) is submodular. Exercise 4. Let G(V;E) be a graph. For F E, define: inwall serviceshttp://www.columbia.edu/~yf2414/ln-submodular.pdf in wall security cabinetWebOne may verify that fis submodular. Maximum cut: Recall that the MAX-CUT problem is NP-complete. ... graph and a nonnegative weight function c: E!R+, the cut function f(S) = c( (S)) is submodular. This is because for any vertex v, we have ... a monotone submodular function over a matroid constraint. Initially note that a function F : 4 [0;1] ... in wall server rackWebexample is maximum cut, which is maximum directed cut for an undirected graph. (Maximum cut is actually more well-known than the more general maximum directed … in wall security camera monitor